
We build a ML pipeline
after we deploy

by Alyona Galyeva
for EuroPython 2021



Agenda

1. Introduction

2. The awesome solution: 
• ML pipeline out of the box in 1 line of code
• add ML pipeline anytime even in prod env 



Agenda
1. Introduction

2. ML Pipeline:
• why and when
• building blocks
• engineering
• debugging and monitoring
• open-source Python libraries to save your time



Introduction





ML Pipeline:
why and when



Why?

reduce the cost of data science projects:
• focus on new cases/models
• prevent bugs
• audit

When?

• go from PoC to MVP
• time to scale



ML Pipeline:
building blocks



https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Development and experimentation

Try new ML algorithms with orchestrated 
experiment steps

Output: ML pipeline steps source code



https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

ML pipeline continuous integration

Build source code, run tests

Output: ML pipeline components to deploy



https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

ML pipeline continuous delivery

Deploy artifacts to the target env

Output: deployed ML pipeline



https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Automated triggering

ML pipeline execution in prod

Output: trained and registered ML model



https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Model continuous delivery

Serve model as a prediction service

Output: deployed model prediction service



https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Monitoring

Collect stats on model performance

Output: trigger to execute the pipeline or 
a new experiment cycle



ML Pipeline:
engineering



Engineer around failures

- input checks
- output checks
- model fallback

Engineer for performance

- scale
- caching
- feedback collection



ML Pipeline:
debugging 

and monitoring



ML debugging and monitoring

Source: https://research.google/pubs/pub46555/



Top 3 debugging issues

• unpinned libraries
• data pre-processing

• scattered config for diff envs

Monitoring

• system monitoring
• data monitoring
• model monitoring



ML Pipeline:
Python libraries



Delta lake, DVC - data versioning
Airflow - data processing

Great Expectations - data validation
Feast - feature store

Hyperopt, Katib - tuning
Kubeflow, Pachyderm, TensorFlow Extended- platform
LIME, SHAP, Alibi Explain- model interpretability

Mlflow - lifecycle management
Seldon Core - model serving

FastAPI - restful APIs
Pytest, locust - testing

Evidently, Alibi Detect - debugging and monitoring

https://docs.delta.io/latest/index.html
https://dvc.org/doc
https://airflow.apache.org/docs/
https://docs.greatexpectations.io/en/latest/
https://docs.feast.dev/
http://hyperopt.github.io/hyperopt/
https://www.kubeflow.org/docs/components/katib/hyperparameter/
https://www.kubeflow.org/docs/started/installing-kubeflow/
https://www.pachyderm.com/resources/
https://www.tensorflow.org/tfx
https://github.com/marcotcr/lime
https://github.com/slundberg/shap
https://docs.seldon.io/projects/alibi/en/stable/
https://mlflow.org/
https://docs.seldon.io/projects/seldon-core/en/latest/
https://fastapi.tiangolo.com/
https://docs.pytest.org/en/6.2.x/
https://docs.locust.io/en/stable/
https://docs.evidentlyai.com/
https://docs.seldon.io/projects/alibi-detect/en/stable/


Questions?


